
Introduction

Packet radio networks have evolved from
simple signaling systems to complex
structures of communication using
multi-layered protocol design. In many
ways the evolution of packet radio com-
munication has paralleled the evolution
of data communication over wire and
other land-based media. There have
been periods of experimentation followed
by periods of standardization during
which more and more users of the net-

work have contributed to its technical
progress.

We are now in a rather special period. In
parallel with the debate going on in our
governmental, educational and commer-
cial institutions on the merits of OSI ver-
sus TCP/IP, a similar debate has already
started in our amateur ranks.

The point of this paper is not to argue for
one or the other sides of this debate.
Rather we wish to report on some results

OSI Services on TCP/IP Networks
Anders Klemets, SM0RGV

Stephen Pink, KF1Y

Swedish Institute of Computer Science
Box 1263

S-164 28 Kista
Sweden

ABSTRACT

This paper describes the design and implementation of a method for providing
upper-layer OSI services on top of a TCP/IP/AX.25 protocol stack. The tools for
the project include the KA9Q Internet package in common use today in amateur
packet radio, and ISODE, an ISO development package designed for wire-based
networks but modified for packet radio use. The method used is described in
DARPA/Internet RFC-1006 and is a standard for those in the Internet community
who implement ISO protocols using TCP/IP based networks.

The paper first describes the network architecture of RFC-1006 and the basic sce-
nario surrounding the implementation. A description of the implementation fol-
lows as well as plans for future development. The paper ends with a conclusion
and a list of references to recent work.

we have achieved using what we consider
the best of OSI and TCP/IP in their cur-
rent form as the basis for amateur packet
radio.

We have done this according to RFC-

1006, also described in [RoseCass], a
DARPA/Internet document, describing a
method for achieving upper-layer OSI
services on TCP/IP networks using the
KA9Q Internet package along with a
popular and publicly available implemen-
tation of the ISO specified OSI upper lay-
ers, ISODE. The KA9Q software is well
known to the amateur packet radio com-
munity, but the ISODE package needs
some introduction. ISODE stands for
"ISO Development Environment." It pro-
vides the functionality for services at lay-
ers 5, 6 and 7 (session, presentation and
application) of the OSI reference model
while leaving the lower layers (transport
and below) to native or pre-existing im-
plementations on the host computer. For
a detailed description of the OSI stack
and the ISO protocols, see [Tanen]. On

Ethernets and other wire-based net-
works, ISODE has been married success-
fully to various lower layer implementa-
tions, such as X.25 and foremost to
TCP/IP. Thus ISODE has been used to
foster a transition from DARPA to OSI
applications and as a method for both
worlds to co-exist. It was only a matter
of software development to realize this
marriage in amateur packet radio.

Most of the debate on the merits of OSI
versus TCP/IP in the amateur communi-
ty have centered on the lower or middle
layers (network and transport.) It seems
to us that the promise of OSI is in the
upper layers, particularly in the richness
of applications which have been recently
defined and proposed by the ISO and
other international bodies. Applications
such as File Transfer Access and
Management (FTAM), Message Handling
Service (X.400) and Virtual Terminal
seem to offer levels of functionality yet
unavailable in the DARPA suite of appli-
cations (FTP, SMTP and Telnet) and may

Figure 1: RFC-1006 as implemented with ISODE and the KA9Q

I n t e r n e t p a c k a g e .

Presentation level
ASN.1

Session level
ISO 8327

Transport level
TP0

Physical level

ISODE

 KA9Q
Internet
Package

Application level
FTAM, VT, X.400,...

Network level
TCP

IP

Link level
AX.25

offer the amateur community useful new
services. In any case, we will never find
out the truth of these claims for OSI un-
less we begin to experiment with these
protocols.

The Scenario

According to RFC-1006, OSI services are
achieved atop a TCP/IP network by es-
tablishing a Transport Service Access
Point or TSAP upon which one then
builds the session, presentation and ap-
plication protocol agents prescribed by
the ISO. The simplest way to do this, ac-
cording to the RFC, is to encapsulate the
least complicated ISO Transport Protocol,
commonly known as TP0 (CCITT X.224
Class 0), inside TCP. The transport pro-
tocol TP0 requires the network service
beneath to be reliable in an end-to-end
sense. This means that the network
guarantees that the packets on the re-
ceiving end are ordered in the same way
as they were on the sending end before
they are delivered to the network user, or
in this case, the transport entity TP0.
Fortunately, the combination of TCP and
IP do exactly that. They provide a "virtu-
al circuit" network upon which upper
level services can be built. (See Figure
1.) Instead of thinking of TCP as analo-
gous to the OSI Transport Level and IP
to the OSI Network Level, RFC-1006
asks us to consider the combination of
TCP and IP as providing a connec-
tion-oriented Network service similar to
the service provided by the ISO protocol
X.25.

Practically speaking, this scenario can be
realized by using any implementation of
TCP/IP with the proper programming in-
terface to the ISODE software package
which contains a TP0 implementation
and a socket interface to TCP. Since the
new KA9Q Internet software [Karn 88]

(often referred to as NOS) provides
TCP/IP and a socket interface for build-
ing new applications, the "construction

job" was relatively easy. From the point
of view of ISODE, the KA9Q software
provides an OSI-like connection-oriented
network service, and from the point of
view of the KA9Q software, ISODE is just
one more application using its socket in-
terface.

We had to make a number of design deci-
sions when we started this development;
some of them were forced on us, others
were made for the sake of modularity.
First, we had to port NOS from MS-DOS
to UNIX1. The size of ISODE in memory
was so large, that any hope of running
the ISO protocols from this package on
MS-DOS was abandoned. This is of
course a major disadvantage. Not every
amateur has the luxury of a computer
running UNIX in his shack. On the
other hand, UNIX is starting to appear
more frequently on personal computers
and, with the popularity of the new
80386 machines increasing, it seems that
UNIX may become a standard PC operat-
ing system in the future. UNIX provides
a process address space large enough to
hold the ISODE implementations of the
ISO protocols we wished to use because it
offers paged virtual memory. ISODE is
written in C and meant to be run in
UNIX environments, so it was a natural
decision to change to UNIX despite the
fact that UNIX is not yet popular among
amateurs. It is perhaps a significant
point about this particular implementa-
tion of ISO protocols that their size dic-
tated a change in operating system envi-
ronment. It seems characteristic of the
ISO protocols in general that full imple-
mentations grow to rather huge sizes.
Whether this size is necessary for any im-
plementation is the subject of another de-
bate.

Once done, the choice of UNIX as the op-
erating system for our experimentation
offered us some distinct advantages.

1. UNIX is a t rademark of AT&T.

ISODE was already being run at our site
over a number of different sub-networks
such as the Swedish Telecom's X.25
Public Data Network and a TCP/IP
Ethernet local area network with a gate-
way to the DARPA/Internet. Thus an
AX.25 sub-network interface could be
added in a modular way.

Design considerations

Although it would be possible to write a
special driver for AX.25 that sits below
the socket interface and the native
TCP/IP code in a machine running
Berkeley UNIX, this approach has some
disadvantages. The main one being that
computers running Berkeley UNIX are
rather expensive.

There are a few radio amateurs that own
UNIX computers, but these are often
smaller models, eg. 80386 machines.
They usually run AT&T UNIX System V,
that does not have TCP/IP except as an
expensive add-on.

An AX.25 driver for Berkeley UNIX has
been written [Neuman], but there are
some problems with that approach. For
instance, the Berkeley TCP implementa-
tion expects shorter response times than
what may be possible to achieve on a
packet radio link.

The KA9Q Internet package [Karn 87], on
the other hand, is written especially for
use over packet radio. Its TCP imple-
mentation does not have timeouts built
in. It also includes new mechanisms for
congestion control. This makes the
KA9Q TCP implementation robust in the
face of long outages and the heavy con-
gestion one may experience on packet
radio channels.

Because the source code for the KA9Q
Internet package is freely available we
had another strong reason to choose it as
the basis for this effort.

Porting NOS to UNIX

We already had the pre-NOS KA9Q
Internet package running on a Sun work-
station, but unfortunately it did not pro-
vide a network interface that we could
use. It used a "commutator loop" to
switch between different tasks. This is
far from transparent to the applications.

However, the new version of the package,
NOS, provided precisely what we needed.
Its socket interface makes it much easier
to write application programs for the var-
ious networking protocols supported by
the KA9Q package.

As an initial effort, the NOS program
was ported, with as few changes as possi-
ble, to different UNIX systems. This was
fairly easy to do on a Sun-3 running
SunOS 4.0. On our 80386 machine run-
ning UNIX System V release 3.2, howev-
er, things turned out to be more problem-
atic.

There were three main problems. Firstly,
a timer interrupt mechanism is needed.
This can be implemented with UNIX sig-
nals. The timer interrupt decides what
granularity one will get in retransmis-
sion timers, etc. Although getting a
timer interrupt only once per second will
work, one would like to have better reso-
lution. On a Berkeley UNIX machine
this can be done with the ualarm() sys-
tem call. But UNIX System V alarm()
provides a maximum granularity of one
second. The solution to this was to let
NOS create a child process that makes a
poll() system call and then sends a signal
to its parent. This system call can be
made to sleep for times less than one sec-
ond. Unfortunately, our System V ma-
chine occasionally fails to catch the signal
as it should, and terminates the program.
This is yet unresolved.

Secondly, the NOS program must get an

interrupt when one or more characters
are available. On SunOS 4.0, ttys are
implemented as STREAMS drivers. This
makes it possible to get a signal every
time new data arrives.

In the version of UNIX system V that we
have this is not possible, since the serial
line ttys are not implemented as
STREAMS drivers. Instead, we had to
resort to a loop that polls the ttys once
every 10 milliseconds. Obviously, this
causes a major performance degradation.

Finally, to achieve its multitasking, NOS
assigns a separate stack to each of its
processes. These stack areas should be in
the data segment of NOS to make it pos-
sible to both read and write the stacks.
This works on a MS-DOS machine and on
a Sun-3, but on a Sun-4 and our 80386
machine running UNIX System V, one is
not allowed to move the stack pointer
into the data segment. The only solution
we see is to place the stacks in some
spare area below the original position of
the stack pointer, but above the heap.

Link level interfacing

We did some initial tests with ISODE
over packet radio without modifying the
ISODE source code. The FTAM client
transmitted its IP datagrams on an
Ethernet. The Ethernet packets were in-
tercepted by NOS. It routed the IP data-
grams onto the radio channel to another
NOS program. This NOS program rout-
ed the datagrams to the FTAM server
over an Ethernet.

Although this method works, it has some
disadvantages. The end point machines
are completely unaware that their IP dat-
agrams are routed through a packet radio
channel. Therefore the datagrams have
sizes suitable for Ethernets, approxi-
mately 1500 bytes. If these IP datagrams
are sent in 256 byte AX.25 frames, they
have to be segmented, which is some-

thing that should be avoided. Also, the
TCP implementation will timeout if the
throughput worsens.

Network level interfacing

The problems described above made it
clear to us that it was inefficient to use
the KA9Q software as a IP router only.
It must be used by the application pro-
grams in an end to end sense. ISODE
should use at least KA9Q TCP/IP as its
reliable network service.

There are several ways of implementing
this. One could make the services provid-
ed by ISODE (FTAM, VT, etc.) a part of
the NOS program. But the program
would become so big that it would not be
possible to run it on an MS-DOS ma-
chine.

Furthermore, the multitasking in NOS is
done non-preemptively. This means that
every process runs without interruption
until it needs to wait. This works very
well with communication protocols, since
they often need to wait. But there might
be high level applications that do not
wait as often. Typical examples of this
are programs that search through large
databases on disk or tape. It is not easy
to make these and similar applications
work well when the operating system
scheduler is non-preemptive.

The most obvious objection against mak-
ing ISODE a part of the NOS program is
that UNIX is already multitasking.
Having a program that implements its
own multitasking adds unnecessary over-
head.

Separate UNIX processes

We decided to eliminate the multitasking
in NOS by splitting it up into several
UNIX processes. Our implementation,
whose working name is NETNIX, is
shown in figure 2.

All transport, network and link protocols
in NOS are run in a background process
on the UNIX machine. Another process
handles input from the tty to which the
TNC is attached. This process has only
one tty to serve, so it can block indefinite-
ly, instead of polling it every 10 millisec-
onds. This eliminates one of the major
problems with running the KA9Q soft-
ware on System V machines.

The application programs, such as FTP,
etc., do indeed run as separate programs
under UNIX. They communicate with
the server program using normal UNIX
System V shared memory and sema-
phores. This interprocess communication
can be made invisible to the application
programmer. All he needs to know is
how to use the socket interface, which he
links into the program at compile time.
This socket interface is similar to the one
provided by Berkeley UNIX systems, but
is implemented using the socket code in
NOS.

All application programs and the server
have access to a pool of shared memory.
They allocate buffers (mbufs) from this
pool and transfer the data by passing
pointers to the appropriate buffers. The
socket table and a few global variables
are also kept in shared memory.

When an application program makes a
call to a socket interface function, such as
socket() or connect(), it is executed in its
own process space rather than in the
server process. Eventually there is a
need to call some protocol specific func-
tion, like open_tcp(). The application pro-
gram then issues a remote procedure call
to the server, telling it to execute the
specified function with the specified pa-
rameters. When the server has finished
executing the function, it returns a value
to the application program. The remote
procedure calls are implemented by pass-
ing pointers to buffers in shared memory.

The main disadvantage with this imple-

Figure 2 : Two appl ica t ion programs communica t ing us ing the NETNIX shared

m e m o r y , s e m a p h o r e a n d s o c k e t i n t e r f a c e s .

Socket interface

FTAM

ASN.1

TP0

ISO 8327

Shared memory, semaphores

Socket server

TCP

IP

AX.25

KISS

Hardware

FTP

Socket interface

mentation is that all critical sections
have to be isolated with semaphores.
Otherwise strange things might happen,
such as two processes trying to write to
the same piece of memory at the same
time. This extra overhead, and the fact
that the protocols run in user space, forc-
ing context switches, make the imple-
mentation somewhat slower compared to
native TCP/IP code on a Sun workstation,
but it is still acceptable.

Transport level interfacing

ISODE has a modular interface between
the session level protocol and the trans-
port service. So, it would be possible to
incorporate a TP0 transport protocol into
NOS or NETNIX.

But unlike TCP, there is nothing to gain
by trying to customize TP0 for use over
AX.25 packet radio links. The main pur-
pose of TP0 is to provide a transport ser-
vice access point, it does very little else as
a protocol. Thus, we can use the TP0 im-

plementation just as it is included in
ISODE. There is no pressing need to
build our own OSI-conformant transport
protocol on top of TCP/IP.

Implementing protocols in the UNIX
kernel

The protocol handling in NETNIX is fully
implemented in user space. In operating
systems like UNIX one usually puts the
communication protocols, at least up to
the transport level, into the operating
system kernel. If the implementation is
done properly there is no need to use
semaphores to prevent conflicts between
different users.

SunOS 4.0 and System V release 3 pro-
vide a mechanism called STREAMS for
adding functionality to a communications
channel in a modular way. Once a
STREAMS device driver is opened, it is
possible to push modules on top of it. All
data that is written to the device may
pass through this module that can add or

Figure 3: TCP/IP and RFC-1006 implemented wi th STREAMS.

TCP driver

IP module

ARP module

AX.25 module

t t y d r i ve r

ISODE

Socket interface

FTP

Socket interface

KERNEL
SPACE

USER
SPACE

remove protocol headers. It is also possi-
ble to send messages that are interpreted
as specific commands to the modules.
One may also build one´s own STREAMS
drivers, which can multiplex in both di-
rections.

At the time of the writing this paper, we
have finished an AX.25 STREAMS mod-
ule. This module can be pushed on top of
a STREAMS tty driver. The AX.25 mod-
ule itself does not know how to write
characters to a serial port. This is han-
dled by the underlying tty driver. An
ARP module and an IP module are also
near completion. Eventually a TCP driv-
er will be written. It will sit on top of all
other modules and allow several user
processes to access it by means of UNIX
file descriptors. (See figure 3.)

A Berkeley UNIX-like socket interface
could be built as a set of library routines.
These library routines would map the fa-
miliar calls such as bind(), connect(), etc.,
to a series of commands to the TCP driv-
er in the kernel.

Conclusion

We have described an experiment achiev-
ing certain OSI services such as FTAM
over TCP/IP/AX.25 packet radio links.
We found that we could do this by modi-
fying existing publicly available software.

Thus, we have created a testbed where
further experimentation with ISO proto-
cols on packet radio networks can be fur-
ther researched and developed. We ob-
served, among other things, that there
was more processing overhead for the
ISO protocols than for the DARPA appli-
cation protocols and we need to eliminate
this processing bottleneck before we rec-
ommend the everyday use of the ISODE
part of our software. We do, however,
believe that we have made the first step
towards developing a usable OSI-confor-

mant packet radio network2.

Acknowledgements

We wish to thank Hakim Laraqui of
Swedish Telecom Radio, who helped de-
sign and implement the ISODE packet
radio interface. We owe debts of gratitude
to Marshall Rose for writing ISODE, and
to Phil Karn for writing the KA9Q
Internet package.

References

Karn 87 Phil Karn, “The KA9Q
Internet (TCP/IP) Package: A
Progress Report”, ARRL 6th
Computer Networking Conference,
August 1987, pp. 90-94.

Karn 88 Phil Karn, “Amateur
TCP/IP: An Update”, ARRL 7th
Computer Networking Conference,
October 1988, pp. 115-121.

N e u m a n Clifford Neuman, “Packet
Radio and IP for the UNIX
Operating System”, ARRL 6th
Computer Networking Conference,
August 1987, pp. 143-147.

RoseCass M.T. Rose, D.E. Cass, “OSI
Transport Services on Top of the
TCP”, Computer Networks and
ISDN Systems, North-Holland,
Vol. 12, No. 3, 1986, pp. 159-179.

T a n e n Andrew S. Tanenbaum,
“Computer Networks, Second
Edition”, Prentice-Hall, 1988.

2. The authors may be reached on the
Internet as klemets@sics.se and
steve@sics.se respectively.

